Tetrahedron Letters, Vol.25, No.1, pp 109 - 112, 1984 Printed in Creat Britain

0040-4039/84 \$3.00 + .00 © 1984 Pergamon Press Ltd.

THE CONFORMATIONAL STUDY OF THE NEW ERGOT ALKALOIDS AGROCLAVINE-I AND EPOXYAGROCLAVINE-I BY PROTON MAGNETIC RESONANCE SPECTROSCOPY

V.G.Sakharovsky, A.G.Kozlovsky

Institute of Biochemistry and Physiology of Microorganisms, USSR Academy of Sciences, 142292, Pushchino, Moscow region, USSR

The lOO MHz p.m.r. data on the new ergot alkaloids agroclavine-I and epoxyagroclavine-I, metabolites of fungus *Penicillium kapuscinskii* strain UCM F-2156D, are reported. Their C and D rings are shown to exist in an "envelope" form. A *cis* orientation of the C/D ring junction is confirmed for both alkaloids.

In this paper we report the results of the study on the solution conformations of the new ergot alkaloids agroclavine-I (a) and epoxyagroclavine-I (b) by p.m.r. spectroscopy.

The samples of agroclavine-I and epoxyagroclavine-I were obtained as described earlier 1 . The p.m.r. spectra (in CDCl₃,O-TMS) were obtained on a Varian HA-lOOD spectrometer (USA). The chemical shifts and coupling constants of the two compounds are listed in Table I.

An "envelope" conformation for the ring C in agroclavine has been demonstrated earlier ². Consideration of the values of ${}^{4I}_{J_{2}-H,4-Ha}$ and ${}^{4I}_{J_{2}-H,4-He}$ of the both compounds (Table I) shows that the "envelope" conformation is also characteristic for C ring in agroclavine-I and epoxyagroclavine-I (Fig.1). The values of ${}^{4I}_{J_{12}-H,1O-H}$ for agroclavine-I and epoxyagroclavine-I (0.8 and 0.8 Hz, respectively) according to the Barfield angular dependences ³ correspond to a planar orientation of the 10-H proton with respect to the indole plane in both compounds.

Table I

Proton	S	Agroclavine-I		Epoxyagroclavine-I	
	δ(p.p.m	.) J(Hz)	δ(p.p.m.) J(Hz)	
1-н	8.05	1.4	8.05	1.7	
2-н	6.81	1.4,1.4,0.8	6.76	1.7,1.6,0.9	
4 - Ha	2.85	9.9,1.4	3.08	9.2,9.2,1.6	
4-He	2.90	5.2,0.8	2.89	9.2,5.9,0.9	
5 - н	3.35	9.9,5.2,5.0,0.8	3.11	9.2,5.9,4.3	
7 - Ha	3.07	3.2,1.9	2.86	13.6	
7 - He	3.07	3.2,1.9	3.11	13.6,0.6	
9-н	5.51	1.9,1.9,1.6,0.8,0.6	3.39	2.3,0.6	
10 - H	3.93	5.0,3.2,3.2,2.2,0,8,0.0	6 3.62	4.3,2.3,0.8	
12-H	6,90	4.6,3.3,0.8	6.96	5.1,3.0,0.8	
13-н	7,10	4.6	7.13	5.1	
14 - H	7.10	3.3	7.12	3.0	
17 - H	1.62	2.2,1.6	1.55	singlet	
N6-Me	2.61	singlet	2.44	singlet	

¹H Chemical shifts and spin-spin coupling constants of protons

Relatively higher values of ${}^{3I}J_{5-H,4-Ha}$ (9.9 and 9.2 Hz, respectively) and lower values ${}^{3I}J_{5-H,10-H}$ (5.0 and 4.3 Hz, respectively) were observed in agroclavine-I and epoxyagroclavine-I. Thus, in

both compounds the 5-H proton is *trans*-oriented relative to 4-Ha and is in a *gauche* position relative to 10-Ha 4 . Such an arrangement of hydrogen atoms at positions C4, C5, C10, indicates a *cis* C/D ring junction for agroclavine-I and epoxyagroclavine-I, which thus can be designated as either 5R, 10S or the 5S, 10R isomers (Fig.1).

The double bond in the 8, 9 position suggests a Ψ -chair or "envelope" conformations for the D-ring in agroclavine-I. The spectrum of agroclavine-I shows both allylic and homoallylic spinspin interactions of the ring protons (Table I). Analysis of the $4\tilde{I}_{9-H,7-H}$ values for agroclavine-I points to a more expressed periplanar orientation of the 7-H protons according to Barfield angular dependences 3 , relative to the plane formed by carbon atoms 10, 9, 8 and 7. This suggests that for the D-ring in agroclavine-I the "envelope" conformation is a more probable one (Fig.1). For epoxyagroclavine-I there are not enough experimental data to draw a definite conclusion about its D ring conformation. However, the increase of the ${}^{3I}J_{1O-H,9-H}$ value (2.3 Hz) relative to agroclavine-I (0.6 Hz) indicates a change of the dihedral angle $\varphi_{9-H,10-H}$ = 90° for the latter compound in the direction of a gauche-orientation of these protons in epoxyagroclavine-I. Thus, there is possibly a distortion of the "envelope" conformation to the side of an "arm-chair" conformation in epoxyagroclavine-I (Fig.1).

or enantiomer II

Fig.1. The three dimentional structures of I - agroclavine-I and II - epoxyagroclavine-I.

The formation of ring C is the stage of the biosynthesis at which the stereochemistry at carbon atoms (5 and 10) of the ergoline nucleus is determined ⁵. The ability of *P.kapuscinskii** to produce agroclavine-I and epoxyagroclavine-I with a stereochemistry at C-5 or C-10 different from that of most known ergot alkaloids ⁶ may serve as evidence for a different mechanisms of C ring formation in this fungus than in such producers as, for example, fungi of the genus *Claviceps*.

References

- A.G.Kozlovsky, T.F.Solovieva, V.G.Sakharovsky, V.M.Adanin. Ergot Alkaloids Agroclavine-I and Epoxyagroclavine-I - Metabolites of *Penicillium corylophilum*, Prikladnaya Biokhimiya i Mikrobiologiya, 1982, v.18, pp.535 to 541 (Russ.).
- N.J.Bach, M.S.Boaz, E.C.Kornfeld, C.-I.Chang, H.G.Floss, N.W. Hagaman, E.Wenkert, Nuclear Magnetic Resonance Spectral Analysis of the Ergot Alkaloids. J.Org.Chem., 1974, v.39, pp.1272 to 1276.
- 3. M.Barfield, Angular Dependence of Long-Range Proton Coupling Constants Across Four Bounds. J.Chem.Phys., 1964, v.41, pp. 3825 to 3832.
- V.F.Bystrov, Spin-Spin Interaction of Heminal and Vicinal Protons. Uspekhy Chimii, 1972, v.10, pp.512 to 553 (Russ.).
- 5. C.I.Abou-Chaar, M.F.Güenther, M.F.Manuel, J.E.Robbers, H.G. Floss, Biosynthesis of Ergot Alkaloids. Incorporation of (5R)and (5S)-Mevalonate-5-T into Chanoclavines and Tetracyclic Ergolines. Lloydia, 1972, v.35, p.272.
- H.G.Floss, Biosynthesis of Ergot Alkaloids and Related Compounds, Tetrahedron, 1976, v.32, pp.873 to 912.

* The former name of the culture *Penicillium corylophilum* IBPhM F-152 was redetermined as *Penicillium kapuscinskii* UCM F-2156D in the cabinet of filamentous fungi of the All-Union Collection of Microorganisms (UCM).

(Received in UK 22 August 1983)